CAUCHY PROBLEM FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS Dedicated to Professor Constantine M. Dafermos on the occasion of his 70th birthday

We consider the Cauchy problem for one-dimensional isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient. For regular initial data, we show that the unique strong solution exits globally in time and converges to the equilibrium state time asymptotically. When i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学物理学报:B辑英文版 2012, Vol.32 (1), p.315-324
1. Verfasser: Lian Ruxu Liu Jian Li Hailiang Xiao Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Cauchy problem for one-dimensional isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient. For regular initial data, we show that the unique strong solution exits globally in time and converges to the equilibrium state time asymptotically. When initial density is piecewise regular with jump discontinuity, we show that there exists a unique global piecewise regular solution. In particular, the jump discontinuity of the density decays exponentially and the piecewise regular solution tends to the equilibrium state as t →+∞
ISSN:0252-9602
1572-9087