Interdecadal Modulation of the Influence of La Nifia Events on Mei-yu Rainfall over the Yangtze River Valley
The aim of this study was to investigate changes in the relationship between mei-yu rainfall over East China and La Nifia events in the late 1970s, a period concurrent with the Pacific climate shift, using meiyu rainfall data and the National Centers for Environmental Prediction/National Center for...
Gespeichert in:
Veröffentlicht in: | 大气科学进展:英文版 2012, Vol.29 (1), p.157-168 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to investigate changes in the relationship between mei-yu rainfall over East China and La Nifia events in the late 1970s, a period concurrent with the Pacific climate shift, using meiyu rainfall data and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. This relationship was modulated by the climate shift: Before the 1977/1978 climate shift and after the 1992/1993 climate shift, mei-yu rainfall levels were above normal in most La Nifia years, whereas during the period 1979 1991, mei-yu rainfall was usually below normal levels in La Nifia years. Both composite analyses and results from an atmospheric general circulation model show remarkable detail in terms of La Nifia's impacts on mei-yu rainfall in the late 1970s due to the change in the mean climatic state over the tropical Pacific. After the late 1970s, the tropical Pacific SSTs were warmer, and the mean state of low-level anticyclone circulation over the western North Pacific (WNP) weakened. Superimposed on La Nifia-related cyclonic anomaly over the WNP, anticyclonic circulation weakened. Prior to the late 1970s, the mean state of low-level anticyclone circulation over the WNP was stronger and was less affected by La Nifia-related anomalous cyclones. Anticyclone circulation may have brought moisture to the Yangtze River valley, leading to above-normal rainfall. |
---|---|
ISSN: | 0256-1530 1861-9533 |