Orbital responses to methyl sites in CnH2n+2 (n= 1-6)

Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space. The highest occupied molecular orbital (HOMO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国物理:英文版 2012, Vol.21 (2), p.16-22
1. Verfasser: 杨则金 程新路 朱正和 杨向东
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space. The highest occupied molecular orbital (HOMO) investigations indicate the p- electron profiles in methane, ethane, propane, and n-butane. By increasing the number of carbon-carbon bonds in lower momentum regions, the s, p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P 〈 0.50 a.u.). Meanwhile, the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds, meaning that more electrons have contributed to orbital construction. The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space. An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space. However, such shifts are greatly reduced in the outer valence space. Meanwhile, the opposite energy shift trend is found in the intermediate valence space.
ISSN:1674-1056
2058-3834