Fabrication and Magnetic Property of One-dimensional SrTiO3/SrFel2O19 Composite Nanofibers by Electrospinning
The composite nanofibers of SrTiO3/SrFel2O19 with a molar ratio of 1:1 and diameter about 120 nm were prepared by electrospinning. Effects of calcination temperature on the formation, crystallite size, morphology and magnetic property were studied by infrared spectroscopy, X-ray diffraction, scannin...
Gespeichert in:
Veröffentlicht in: | 材料科学技术学报:英文版 2011, Vol.27 (11), p.996-1000 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The composite nanofibers of SrTiO3/SrFel2O19 with a molar ratio of 1:1 and diameter about 120 nm were prepared by electrospinning. Effects of calcination temperature on the formation, crystallite size, morphology and magnetic property were studied by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The binary phase of strontium ferrite and titanate was formed after being calcined at 900℃ for 2 h and the composite nanofibers were fabricated from nanograins of SrTiO3 about 24 nm and SrFel2O19 around 33 nm. The crystallite sizes for the nanofibers increase with increasing calcination temperature and the addition of SrTiO3 has an obvious suppression effect on SrFel2O19 grain growth. The specific saturation magnetization and remanence tend to increase with the crystallite size. With increasing calcination temperature from 900 to 1050℃, the coercivity increases initially, achieving a maximum value of 520.2 kA.m^-1 at 950℃, and then shows a reduction tendency. |
---|---|
ISSN: | 1005-0302 1941-1162 |