On scalar curvature for totally real minimal submanifolds in CPn
Let CP~n be a complex projective n-space with the Fubini-Study metric of constantholomorphic sectional curvature c,and M be an n-dimensional compact totally real minimalsubmanifold in CP~n. It is known from refs. [1-3] that if the scalar curvature ρ≥n~2(n-2)c/2(2n-1) for M, then M is either totally...
Gespeichert in:
Veröffentlicht in: | 中国科学通报:英文版 1995 (8), p.621-626 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let CP~n be a complex projective n-space with the Fubini-Study metric of constantholomorphic sectional curvature c,and M be an n-dimensional compact totally real minimalsubmanifold in CP~n. It is known from refs. [1-3] that if the scalar curvature ρ≥n~2(n-2)c/2(2n-1) for M, then M is either totally geodesic in CP~n or n=2 and ρ=0, and M is a finiteRiemannian covering of the unique flat torus minimally imbedded in CP~2 with the parallel |
---|---|
ISSN: | 2095-9273 |