On scalar curvature for totally real minimal submanifolds in CPn

Let CP~n be a complex projective n-space with the Fubini-Study metric of constantholomorphic sectional curvature c,and M be an n-dimensional compact totally real minimalsubmanifold in CP~n. It is known from refs. [1-3] that if the scalar curvature ρ≥n~2(n-2)c/2(2n-1) for M, then M is either totally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国科学通报:英文版 1995 (8), p.621-626
1. Verfasser: 沈一兵 东瑜昕 郭孝英
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let CP~n be a complex projective n-space with the Fubini-Study metric of constantholomorphic sectional curvature c,and M be an n-dimensional compact totally real minimalsubmanifold in CP~n. It is known from refs. [1-3] that if the scalar curvature ρ≥n~2(n-2)c/2(2n-1) for M, then M is either totally geodesic in CP~n or n=2 and ρ=0, and M is a finiteRiemannian covering of the unique flat torus minimally imbedded in CP~2 with the parallel
ISSN:2095-9273