Integrating the equations of motion of a nonholonomic system by quadratures

Reference [1] points out that if a Hamiltonian system with n degrees of freedom hasn independent first integrals in involution, i.e. the Lie algebra is commutative, then it canbe integrated by quadratures. This note studies a particular nonholonomic system, theequations of whose motion can be transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国科学通报:英文版 1995 (17), p.1424-1428
1. Verfasser: 梅凤翔 吴惠彬 朱海平&lt Author&gt MEI Fengxiang WU Huibin and ZHU Haiping(Department of Applied Mechanics Beijing Institute of Technology. Beijing 100081 China)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reference [1] points out that if a Hamiltonian system with n degrees of freedom hasn independent first integrals in involution, i.e. the Lie algebra is commutative, then it canbe integrated by quadratures. This note studies a particular nonholonomic system, theequations of whose motion can be transformed in the form of Hamilton’s canonical equa-tions. If a sufficiently large number of the independent first integrals in involution is ob-tained, then the above result used to study holonomic systems can be applied to the
ISSN:2095-9273