Integrating the equations of motion of a nonholonomic system by quadratures
Reference [1] points out that if a Hamiltonian system with n degrees of freedom hasn independent first integrals in involution, i.e. the Lie algebra is commutative, then it canbe integrated by quadratures. This note studies a particular nonholonomic system, theequations of whose motion can be transf...
Gespeichert in:
Veröffentlicht in: | 中国科学通报:英文版 1995 (17), p.1424-1428 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reference [1] points out that if a Hamiltonian system with n degrees of freedom hasn independent first integrals in involution, i.e. the Lie algebra is commutative, then it canbe integrated by quadratures. This note studies a particular nonholonomic system, theequations of whose motion can be transformed in the form of Hamilton’s canonical equa-tions. If a sufficiently large number of the independent first integrals in involution is ob-tained, then the above result used to study holonomic systems can be applied to the |
---|---|
ISSN: | 2095-9273 |