Commutative Noetherian rings possessing a homological property
For a commutative Noetherian local ring A, we have the following proposition: A is aGorenstein ring if and only if for all finitely generated A-modules M, id_AM~-is finite if andonly if pd_AM is finite. Now, we consider the following property: given a Noetherian localring A, for an arbitrary finitel...
Gespeichert in:
Veröffentlicht in: | 中国科学通报:英文版 1995 (11), p.886-889 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a commutative Noetherian local ring A, we have the following proposition: A is aGorenstein ring if and only if for all finitely generated A-modules M, id_AM~-is finite if andonly if pd_AM is finite. Now, we consider the following property: given a Noetherian localring A, for an arbitrary finitely generated A-module M, id_AM is finite, implying that pd_AMis finite. We ask: what ring is characterized by the above property? In this note, we firstconsider the above question; then for commutative Noetherian ring A (not necessarily lo- |
---|---|
ISSN: | 2095-9273 |