B-CONVERGENCE PROPERTIES OF GENERAL LINEAR METHODS

In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing results on Runge-Kutta methods. Specializing our results for the case of multi-step Rung...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:高等学校计算数学学报:英文版 1996 (1), p.13-19
1. Verfasser: 黄乘明
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing results on Runge-Kutta methods. Specializing our results for the case of multi-step Runge-Kutta methods, a series of B-convergence results are obtained.
ISSN:1004-8979
2079-7338