Exact Soliton Solutions to a Generalized Nonlinear Schrodinger Equation
The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exis...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2010-01, Vol.53 (1), p.159-165 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates. |
---|---|
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/53/1/33 |