A Hierarchy of Nonlinear Lattice Soliton Equations and Its Darboux Transformation
A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Darboux transformation is established with the help of gauge transformations of Lax p...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2010-01, Vol.53 (1), p.13-16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Darboux transformation is established with the help of gauge transformations of Lax pairs for the typical lattice soliton equations. The exact solutions are given by applying the Darboux transformation. |
---|---|
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/53/1/03 |