基于投影寻踪和BP神经网络的多因素预测模型
文章运用投影寻踪方法,在不改变训练样本分类质量的条件下,按照输入影响因素相对于输出的重要度的大小.确定BP神经网络的输入层变量维数。通过对样本的学习。建立投影寻踪BP神经网络(PPCBPN)多因素预测模型,将其用于国际黄金价格预测。结果表明,该方法减少了网络的训练时间,改善了学习效率,具有较高的预测精度,是可行和有效的。...
Gespeichert in:
Veröffentlicht in: | 统计与决策 2010 (1), p.4-6 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 文章运用投影寻踪方法,在不改变训练样本分类质量的条件下,按照输入影响因素相对于输出的重要度的大小.确定BP神经网络的输入层变量维数。通过对样本的学习。建立投影寻踪BP神经网络(PPCBPN)多因素预测模型,将其用于国际黄金价格预测。结果表明,该方法减少了网络的训练时间,改善了学习效率,具有较高的预测精度,是可行和有效的。 |
---|---|
ISSN: | 1002-6487 |