贝叶斯网络参数学习中的噪声平滑
对于存在噪声的贝叶斯网络参数学习,目前主要通过调整贝叶斯网络的结构来增强其抗噪声能力,但调整后的结构往往会降低网络的可靠性,不易实现持续学习,而且不能从源头上排除或减少噪声对参数的影响。将贝叶斯网络与Gibbs抽样相结合,以变量作为基本单位,使用马尔科夫毯提供的信息平滑一个变量对应的数据,可有效地避免上述问题。...
Gespeichert in:
Veröffentlicht in: | Xi tong fang zhen xue bao 2009 (16), p.5053-5056 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 对于存在噪声的贝叶斯网络参数学习,目前主要通过调整贝叶斯网络的结构来增强其抗噪声能力,但调整后的结构往往会降低网络的可靠性,不易实现持续学习,而且不能从源头上排除或减少噪声对参数的影响。将贝叶斯网络与Gibbs抽样相结合,以变量作为基本单位,使用马尔科夫毯提供的信息平滑一个变量对应的数据,可有效地避免上述问题。 |
---|---|
ISSN: | 1004-731X |