贝叶斯网络参数学习中的噪声平滑

对于存在噪声的贝叶斯网络参数学习,目前主要通过调整贝叶斯网络的结构来增强其抗噪声能力,但调整后的结构往往会降低网络的可靠性,不易实现持续学习,而且不能从源头上排除或减少噪声对参数的影响。将贝叶斯网络与Gibbs抽样相结合,以变量作为基本单位,使用马尔科夫毯提供的信息平滑一个变量对应的数据,可有效地避免上述问题。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xi tong fang zhen xue bao 2009 (16), p.5053-5056
1. Verfasser: 王双成 冷翠平 杜瑞杰
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:对于存在噪声的贝叶斯网络参数学习,目前主要通过调整贝叶斯网络的结构来增强其抗噪声能力,但调整后的结构往往会降低网络的可靠性,不易实现持续学习,而且不能从源头上排除或减少噪声对参数的影响。将贝叶斯网络与Gibbs抽样相结合,以变量作为基本单位,使用马尔科夫毯提供的信息平滑一个变量对应的数据,可有效地避免上述问题。
ISSN:1004-731X