细菌生存优化在非线性模型辨识中的应用

提出了一种新的基于细菌生存优化(Bacterial Foraging Optimization BFO)的非线性模型辨识方法。它是利用群集智能仿生BFO算法对一类Hammerstein系统进行辨识,从而估计出它的参数模型。通过对这类输入非线性模型进行辨识,并用仿真实验说明BFO算法的参数设置与选择方法。比较基于粒子群优化(Particle Swarm Optimization PSO)的非线性模型辨识算法,特别是对有色噪声的鲁棒性、模型的辨识精度、辨识收敛速度进行对比分析,以得出BFO辨识算法的优缺点及其有效性。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xi tong fang zhen xue bao 2009 (10), p.3100-3104
1. Verfasser: 林卫星 Peter X. Liu 李文磊 陈炎海 欧超
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:提出了一种新的基于细菌生存优化(Bacterial Foraging Optimization BFO)的非线性模型辨识方法。它是利用群集智能仿生BFO算法对一类Hammerstein系统进行辨识,从而估计出它的参数模型。通过对这类输入非线性模型进行辨识,并用仿真实验说明BFO算法的参数设置与选择方法。比较基于粒子群优化(Particle Swarm Optimization PSO)的非线性模型辨识算法,特别是对有色噪声的鲁棒性、模型的辨识精度、辨识收敛速度进行对比分析,以得出BFO辨识算法的优缺点及其有效性。
ISSN:1004-731X