细菌生存优化在非线性模型辨识中的应用
提出了一种新的基于细菌生存优化(Bacterial Foraging Optimization BFO)的非线性模型辨识方法。它是利用群集智能仿生BFO算法对一类Hammerstein系统进行辨识,从而估计出它的参数模型。通过对这类输入非线性模型进行辨识,并用仿真实验说明BFO算法的参数设置与选择方法。比较基于粒子群优化(Particle Swarm Optimization PSO)的非线性模型辨识算法,特别是对有色噪声的鲁棒性、模型的辨识精度、辨识收敛速度进行对比分析,以得出BFO辨识算法的优缺点及其有效性。...
Gespeichert in:
Veröffentlicht in: | Xi tong fang zhen xue bao 2009 (10), p.3100-3104 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 提出了一种新的基于细菌生存优化(Bacterial Foraging Optimization BFO)的非线性模型辨识方法。它是利用群集智能仿生BFO算法对一类Hammerstein系统进行辨识,从而估计出它的参数模型。通过对这类输入非线性模型进行辨识,并用仿真实验说明BFO算法的参数设置与选择方法。比较基于粒子群优化(Particle Swarm Optimization PSO)的非线性模型辨识算法,特别是对有色噪声的鲁棒性、模型的辨识精度、辨识收敛速度进行对比分析,以得出BFO辨识算法的优缺点及其有效性。 |
---|---|
ISSN: | 1004-731X |