Reducing Subspaces of Toeplitz Operators on Nφ-type Quotient Modules on the Torus

In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学研究通讯:英文版 2009, Vol.25 (1), p.19-29
1. Verfasser: WU NAN Xu XIAN-MIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz.
ISSN:1674-5647