The Torsion-Freeness of Partially Ordered K0-Groups for a Class of Exchange Rings

A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)^+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shu xue yan jiu yu ping lun 2009, Vol.29 (2), p.367-370
1. Verfasser: WU Kuo Hua LV Xin Min
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)^+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is always torsion-free, which generalizes the main result in [3].
ISSN:1000-341X