Simulation and analysis of 13N^+p elastic resonance scattering
The ^13 N+p elastic resonance scattering has been studied at the secondary radioactive beam facility of CIAE in inverse kinematics via a thick-target method. The excitation function for the ^13N(p,p) scattering was obtained in the energy interval of Ecru ≈0.5-3.2 MeV with a ^13 N secondary beam of (...
Gespeichert in:
Veröffentlicht in: | Chinese physics C 2009-03, Vol.33 (3), p.181-186 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ^13 N+p elastic resonance scattering has been studied at the secondary radioactive beam facility of CIAE in inverse kinematics via a thick-target method. The excitation function for the ^13N(p,p) scattering was obtained in the energy interval of Ecru ≈0.5-3.2 MeV with a ^13 N secondary beam of (47.8±1.5) MeV. Careful analysis of the secondary beam components and extensive Monte-Carlo simulations enable the resolution of the experimental proton spectra. The resonance parameters for five low-lying levels in ^14 O were deduced by Rmatrix fitting calculations with MULTI7 and SAMMY-M6-BETA. The present results show general agreement with those from a recent similar work, and thus confirm the observation of a new 0^- level at 5.7 MeV in 140 with an improved width of 400(45) keV. |
---|---|
ISSN: | 1674-1137 0254-3052 2058-6132 |
DOI: | 10.1088/1674-1137/33/3/004 |