Synthesis and behavior ofAl-stabilized α-Ni(OH)2

Nano-fibrous Al-stabilized α-Ni(OH)2 was synthesized by the urea thermal decomposition method. The grain morphology, crystal structure, thermal stability, chemical composition and electrochemical performance of the Al-stabilized α-Ni(OH)2 were investigated. It is found that the urea thermal decompos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Nonferrous Metals Society of China 2009, Vol.19 (1), p.170-175
1. Verfasser: 王虹 唐致远 刘元刚 李昌盛
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nano-fibrous Al-stabilized α-Ni(OH)2 was synthesized by the urea thermal decomposition method. The grain morphology, crystal structure, thermal stability, chemical composition and electrochemical performance of the Al-stabilized α-Ni(OH)2 were investigated. It is found that the urea thermal decomposition is an appropriate way to precipitate the Al-stabilized α-Ni(OH)2 with excellent performance. The fiber cluster TEM pattern shows that the synthesized α-Ni(OH)2 powder is composed of agglomerates of much smaller primary particles. The stabilized α-Ni(OH)2 powder with a 7.67 A, c-axis distance and low thermal stabilities is obtained. The FTIR spectrum shows that the materials contain absorbed water molecules, and intercalated CO3^2- and SO4^2- anions. The experimental α-Ni(OH)2 electrode exhibits excellent electrochemical redox reversibility, high special capacity, good rate discharging performance and perfect cyclic stability. Moreover, the synthesized α-Ni(OH)2 electrode also shows high discharge capacity and cyclic stability at high temperature. The electrode specific capacity remains 290 mA.h/g at 60 ℃, which is only 15 mA.h/g lower than its ambient value, and the capacity loss is 0.9 mA.h/g per charge-discharge cycle.
ISSN:1003-6326