Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan
A complete Permian section in Guangyuan (广元), Northeast Sichuan (四川), has been investigated, to explore the variation in organic matter richness and its main controlling factors. The research results of the detailed lithological description and organic/inorganic geochemical analysis of about 325 sam...
Gespeichert in:
Veröffentlicht in: | Journal of earth science (Wuhan, China) China), 2008, Vol.19 (5), p.507-517 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A complete Permian section in Guangyuan (广元), Northeast Sichuan (四川), has been investigated, to explore the variation in organic matter richness and its main controlling factors. The research results of the detailed lithological description and organic/inorganic geochemical analysis of about 325 samples indicate that a high content of total organic carbon (TOC) occurs in calcareous mudstones and laminated marls or thin-bedded limestones. In carbonate rocks, the TOC content is negatively related to the thickness of the massive beds; the thinner the bed is, the higher the TOC content is. Marine organic matter is enriched in the outer shelf and relatively shallow basin floor environments with the maximum TOC contents of 5.07% and 14.6%, respectively. The main factors that affect the quantity and quality of marine organic matter include primary productivity, depositional processes, and redox conditions during deposition and the early diagenesis stage. Three intervals of marine good quality source rocks are identified in this section; they are lower Chihsia Formation, topmost Maokou (茅口) Formation, and the middle segment of the Dalong (大隆) Formation. They are formed in anoxic environments, in association with high primary productivity. Among these, high productivity in the lower Chihsia interval may originate from an upwelling flow area, whereas, in the rest of the intervals, it is inferred to be related to hot fluid activity due to volcanic eruption. The results of this study suggest that good quality marine source rocks in the Permian strata offer significant hydrocarbon potential. |
---|---|
ISSN: | 1674-487X 1867-111X |