The Best Constants of Hardy Type Inequalities for p = -1

For p :〉 1, many improved or generalized results of the well-known Hardy's inequality have been established: In this paper, by means of the weight coefficient method, we establish the following Hardy type inequality for p = -1: ∑^n i=1(1/i∑^i j=1 aj)^-1〈∑^n i=1(1-π^2-9/3i)ai^-1,where ai 〉 0, i = 1,2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shu xue yan jiu yu ping lun 2008, Vol.28 (2), p.316-322
1. Verfasser: WEN Jia Jin GAO Chao Bang
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For p :〉 1, many improved or generalized results of the well-known Hardy's inequality have been established: In this paper, by means of the weight coefficient method, we establish the following Hardy type inequality for p = -1: ∑^n i=1(1/i∑^i j=1 aj)^-1〈∑^n i=1(1-π^2-9/3i)ai^-1,where ai 〉 0, i = 1,2,... ,n. For any fixed positive integer n 〉 2, we study the best constant Cn such that the inequality ∑^ni=1(1/i∑^ij=1aj)^-1≤cn∑^ni=1ai^-1holds. Moreover, by means ofthe Mathematica software, we givesome examples.
ISSN:1000-341X