The Best Constants of Hardy Type Inequalities for p = -1
For p :〉 1, many improved or generalized results of the well-known Hardy's inequality have been established: In this paper, by means of the weight coefficient method, we establish the following Hardy type inequality for p = -1: ∑^n i=1(1/i∑^i j=1 aj)^-1〈∑^n i=1(1-π^2-9/3i)ai^-1,where ai 〉 0, i = 1,2...
Gespeichert in:
Veröffentlicht in: | Shu xue yan jiu yu ping lun 2008, Vol.28 (2), p.316-322 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For p :〉 1, many improved or generalized results of the well-known Hardy's inequality have been established: In this paper, by means of the weight coefficient method, we establish the following Hardy type inequality for p = -1:
∑^n i=1(1/i∑^i j=1 aj)^-1〈∑^n i=1(1-π^2-9/3i)ai^-1,where ai 〉 0, i = 1,2,... ,n. For any fixed positive integer n 〉 2, we study the best constant Cn such that the inequality ∑^ni=1(1/i∑^ij=1aj)^-1≤cn∑^ni=1ai^-1holds. Moreover, by means ofthe Mathematica software, we givesome examples. |
---|---|
ISSN: | 1000-341X |