Synthesis and electrochemical behavior of LiCoO2 recycled from incisors bound of Li-ion batteries
LiCoO2 was separated from AI foil with dimethyl acetamide(DMAC), and then polyvinylidene fluoride(PVDF) and carbon powders in active material were eliminated by high temperature calcining. The content of the elements in the recovered powders were analyzed. Then the Li2CO3 was added in recycled powde...
Gespeichert in:
Veröffentlicht in: | Transactions of Nonferrous Metals Society of China 2007-11, Vol.17 (A02), p.902-906 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LiCoO2 was separated from AI foil with dimethyl acetamide(DMAC), and then polyvinylidene fluoride(PVDF) and carbon powders in active material were eliminated by high temperature calcining. The content of the elements in the recovered powders were analyzed. Then the Li2CO3 was added in recycled powders to adjust molar ratio of Li to Co to 1.00, 1.03 and 1.05, respectively. The new LiCoO2 was obtained by calcining the mixture at 850 ℃ for 12 h in air. Structure and morphology of the recycled powders and resulted sample were observed by XRD and SEM technique, respectively. The layered structure of the LiCoO2 is improved with the decrease of molar ratio of Li to Co. The charge/discharge performance, and cyclic voltammograms performance were studied. The recycle-synthesized LiCoO2 powders, whose molar ratio of Li to Co is 1.0, is found to have the best characteristics as cathode material in terms of charge--discharge capacity and cycling performance. And the cyclic voltammograms(CV) curve shows the lithium extraction/insertion characteristics of the LiCoO2 well. |
---|---|
ISSN: | 1003-6326 |