EXISTENCE OF A NONTRIVIAL SOLUTION FOR CHOQUARD'S EQUATION

In this article, the authors consider the existence of a nontrivial solution for the following equation: -△u+u=q(x)(|u|^2*1/|x|)u, x∈R^3, where q(x) satisfies some conditions. Using a Min-Max method, the authors prove that there is at least one nontrivial solution for the above equation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2006, Vol.26 (3), p.460-468
1. Verfasser: 张正杰 Tassilo Küpper 胡爱莲 夏红强
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the authors consider the existence of a nontrivial solution for the following equation: -△u+u=q(x)(|u|^2*1/|x|)u, x∈R^3, where q(x) satisfies some conditions. Using a Min-Max method, the authors prove that there is at least one nontrivial solution for the above equation.
ISSN:0252-9602
1572-9087