EXISTENCE OF A NONTRIVIAL SOLUTION FOR CHOQUARD'S EQUATION
In this article, the authors consider the existence of a nontrivial solution for the following equation: -△u+u=q(x)(|u|^2*1/|x|)u, x∈R^3, where q(x) satisfies some conditions. Using a Min-Max method, the authors prove that there is at least one nontrivial solution for the above equation....
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2006, Vol.26 (3), p.460-468 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, the authors consider the existence of a nontrivial solution for the following equation: -△u+u=q(x)(|u|^2*1/|x|)u, x∈R^3, where q(x) satisfies some conditions. Using a Min-Max method, the authors prove that there is at least one nontrivial solution for the above equation. |
---|---|
ISSN: | 0252-9602 1572-9087 |