In vitro and in vivo protective effects of proteoglycan isolated from mycelia of Ganoderma lucidum on carbon tetrachlorideinduced liver injury

AIM: To investigate the possible mechanism of the protective effects of a bioactive fraction, Ganoderma lucidum proteoglycan (GLPG)isolated from Ganoderma luddum mycelia, against carbon tetrachloride-induced liver injury. METHODS: A liver injury model was induced by carbon tetrachloride. Cytotoxicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of gastroenterology : WJG 2006, Vol.12 (9), p.1379-1385
1. Verfasser: Xiao-Jun Yang Jing Liu Lin-Bai Ye Fan Yang Li Ye Jin-Rong Gao Zheng-Hui Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AIM: To investigate the possible mechanism of the protective effects of a bioactive fraction, Ganoderma lucidum proteoglycan (GLPG)isolated from Ganoderma luddum mycelia, against carbon tetrachloride-induced liver injury. METHODS: A liver injury model was induced by carbon tetrachloride. Cytotoxicity was measured by MTY assay. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined with an automatic multifunction-biochemical analyzer and the levels of superoxide dismutase (SOD) and TNF-α were determined following the instructions of SOD kit and TNF radioimmunoassay kit. Uver sections were stained with hematoxylin and eosin (H&E) for histological evaluation and examined under light microscope. RESULTS: We found that GLPG can alleviate the L-02 liver cells injury induced by carbon tetrachloride (CCh) through the measurements of ALT and AST activities and the administration of GLPG to L-02 cells did not display any toxicity. Furthermore, histological analysis of mice liver injury induced by CCh with or without GLPG pretreatment indicated that GLPG can significantly suppress the toxicity induced by CCh in mice liver. We also found that GLPG reduced TNF-α level induced by CCh in the plasma of mice, whereas increased SOD activity in the rat serum. CONCLUSION: GLPG has hepatic protective activity against CCl4 induced injury both in vitro and in vivo. The possible antihepatotoxic mechanisms may be related to the suppression of TNF-α level and the free radical scavenging activity.
ISSN:1007-9327