Computation of lower derivatives of rational triangular Bézier surfaces and their bounds estimation

By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents some explicit formulas of the first and second derivatives of rational triangular Béz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2005, Vol.6 (B08), p.108-115
1. Verfasser: 张磊 王国瑾
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents some explicit formulas of the first and second derivatives of rational triangular Bézier surface with respect to each variable (including the mixed derivative) and derives some estimations of bound both on the direction and magnitude of the corresponding derivatives. All the results above have value not only in surface theory but also in practice.
ISSN:1673-565X
1862-1775