Quantitative information measurement and application for machine component classification codes

Information embodied in machine component classification codes has internal relation with the probability distribution of the code symbol. This paper presents a model considering codes as information source based on Shannon's information theory. Using information entropy, it preserves the mathematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2005, Vol.6 (B08), p.35-40
1. Verfasser: 李凌丰 谭建荣 刘波
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Information embodied in machine component classification codes has internal relation with the probability distribution of the code symbol. This paper presents a model considering codes as information source based on Shannon's information theory. Using information entropy, it preserves the mathematical form and quantitatively measures the information amount of a symbol and a bit in the machine component classification coding system. It also gets the maximum value of information amount and the corresponding coding scheme when the category of symbols is fixed. Samples are given to show how to evaluate the information amount of component codes and how to optimize a coding system.
ISSN:1673-565X
1862-1775