On the Gains of Using High Frequency Data in Portfolio Selection

This paper analyzes empirically the performance gains of using high frequency data in portfolio selection. Assuming Constant Relative Risk Aversion (CRRA) preferences, with different relative risk aversion levels, we compare low and high frequency portfolios within mean-variance, mean-variance-skewn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Annals of Economics and Business 2018-12, Vol.65 (4), p.365-383
Hauptverfasser: Brito, Rui Pedro, Sebastião, Helder, Godinho, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes empirically the performance gains of using high frequency data in portfolio selection. Assuming Constant Relative Risk Aversion (CRRA) preferences, with different relative risk aversion levels, we compare low and high frequency portfolios within mean-variance, mean-variance-skewness and mean-variance-skewness-kurtosis frameworks. Using data on fourteen stocks of the Euronext Paris, from January 1999 to December 2005, we conclude that the high frequency portfolios outperform the low frequency portfolios for every out-of-sample measure, irrespectively to the relative risk aversion coefficient considered. The empirical results also suggest that for moderate relative risk aversion the best performance is always achieved through the jointly use of the realized variance, skewness and kurtosis. This claim is reinforced when trading costs are taken into account.
ISSN:2501-1960
2501-3165
2501-3165
DOI:10.2478/saeb-2018-0030