Accents in Speech Recognition through the Lens of a World Englishes Evaluation Set

Automatic Speech Recognition (ASR) systems generalize poorly on accented speech, creating bias issues for users and providers. The phonetic and linguistic variability of accents present challenges for ASR systems in both data collection and modeling strategies. We present two promising approaches to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in language 2023-12, Vol.21 (3), p.225-244
Hauptverfasser: Del Río, Miguel, Miller, Corey, Profant, Ján, Drexler-Fox, Jennifer, Mcnamara, Quinn, Bhandari, Nishchal, Delworth, Natalie, Pirkin, Ilya, Jetté, Migüel, Chandra, Shipra, Ha, Peter, Westerman, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic Speech Recognition (ASR) systems generalize poorly on accented speech, creating bias issues for users and providers. The phonetic and linguistic variability of accents present challenges for ASR systems in both data collection and modeling strategies. We present two promising approaches to accented speech recognition— custom vocabulary and multilingual modeling— and highlight key challenges in the space. Among these, lack of a standard benchmark makes research and comparison difficult. We address this with a novel corpus of accented speech: Earnings-22, A 125 file, 119 hour corpus of English-language earnings calls gathered from global companies. We compare commercial models showing variation in performance when taking country of origin into consideration and demonstrate targeted improvements using the methods we introduce.
ISSN:1731-7533
2083-4616
DOI:10.18778/1731-7533.21.3.02