(n\)-Fold Filters of EQ-Algebras

In this paper, we apply the notion of \(n\)-fold filters to the \(EQ\)-algebras and introduce the concepts of \(n\)-fold pseudo implicative, \(n\)-fold implicative, \(n\)-fold obstinate, \(n\)-fold fantastic prefilters and filters on an \(EQ\)-algebra \(\mathcal{E}\). Then we investigate some proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Section of Logic 2022-10, Vol.51 (4), p.455-486
Hauptverfasser: Ganji Saffar, Batoul, Aaly Kologani, Mona, Borzooei, Rajab Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we apply the notion of \(n\)-fold filters to the \(EQ\)-algebras and introduce the concepts of \(n\)-fold pseudo implicative, \(n\)-fold implicative, \(n\)-fold obstinate, \(n\)-fold fantastic prefilters and filters on an \(EQ\)-algebra \(\mathcal{E}\). Then we investigate some properties and relations among them. We prove that the quotient algebra \(\mathcal{E}/F\) modulo an 1-fold pseudo implicative filter of an \(EQ\)-algebra \(\mathcal{E}\) is a good \(EQ\)-algebra and the quotient algebra \(\mathcal{E}/F\) modulo an 1-fold fantastic filter of a good \(EQ\)-algebra \(\mathcal{E}\) is an \(IEQ\)-algebra.
ISSN:0138-0680
2449-836X
DOI:10.18778/0138-0680.2022.09