(n\)-Fold Filters of EQ-Algebras
In this paper, we apply the notion of \(n\)-fold filters to the \(EQ\)-algebras and introduce the concepts of \(n\)-fold pseudo implicative, \(n\)-fold implicative, \(n\)-fold obstinate, \(n\)-fold fantastic prefilters and filters on an \(EQ\)-algebra \(\mathcal{E}\). Then we investigate some proper...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Section of Logic 2022-10, Vol.51 (4), p.455-486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we apply the notion of \(n\)-fold filters to the \(EQ\)-algebras and introduce the concepts of \(n\)-fold pseudo implicative, \(n\)-fold implicative, \(n\)-fold obstinate, \(n\)-fold fantastic prefilters and filters on an \(EQ\)-algebra \(\mathcal{E}\). Then we investigate some properties and relations among them. We prove that the quotient algebra \(\mathcal{E}/F\) modulo an 1-fold pseudo implicative filter of an \(EQ\)-algebra \(\mathcal{E}\) is a good \(EQ\)-algebra and the quotient algebra \(\mathcal{E}/F\) modulo an 1-fold fantastic filter of a good \(EQ\)-algebra \(\mathcal{E}\) is an \(IEQ\)-algebra. |
---|---|
ISSN: | 0138-0680 2449-836X |
DOI: | 10.18778/0138-0680.2022.09 |