齐型空间上加权Besov空间与Triebel-Lizorkin空间的Tb定理

【目的】齐型空间自然地包含了欧氏空间Rn、光滑紧Riemann流形及Lipschitz区域的边界等,拟在齐型空间上建立奇异积分算子在加权Besov空间与Triebel-Lizorkin空间上有界的Tb定理。【方法】通过离散Calderón再生公式和几乎正交估计建立加权Besov空间与加权Triebel-Lizorkin空间的Plancherel-P8lya特征刻画,以保证函数空间的范数独立于恒等逼近的选取。【结果】获得了齐型空间上Calderón-Zygmund奇异积分算子在加权Besov空间及Triebel-Lizorkin空间上有界的充分条件。【结论】将欧氏空间上的Calderón-Zyg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:浙江科技学院学报 2024-02, Vol.36 (1), p.1-12
Hauptverfasser: 刘金瑞, 郑涛涛, 肖燕梅
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:【目的】齐型空间自然地包含了欧氏空间Rn、光滑紧Riemann流形及Lipschitz区域的边界等,拟在齐型空间上建立奇异积分算子在加权Besov空间与Triebel-Lizorkin空间上有界的Tb定理。【方法】通过离散Calderón再生公式和几乎正交估计建立加权Besov空间与加权Triebel-Lizorkin空间的Plancherel-P8lya特征刻画,以保证函数空间的范数独立于恒等逼近的选取。【结果】获得了齐型空间上Calderón-Zygmund奇异积分算子在加权Besov空间及Triebel-Lizorkin空间上有界的充分条件。【结论】将欧氏空间上的Calderón-Zygmund奇异积分理论延拓到更广的齐型空间上,为奇异积分算子在函数空间上有界提供了判定方法。
ISSN:1671-8798