考虑广义多维空间效应的S-VaR测算
VaR(value at risk)的测算精度一直是业界和学术关注热点问题.本文应用定义的经济测度距离和引力空间权重矩阵,建立广义多维空间计量模型捕捉金融系统的空间效应信息,构造S-VaR(saptial-value at risk),提高VaR的测算精度.以S&P亚洲50指数作为股票资产组合替代变量进行实证分析,结果表明:广义多维空间效应S-VaR能捕捉金融市场存在的多维空间相关性和风险的空间溢出效应,提高了VaR模型在风险预测中的精确性....
Gespeichert in:
Veröffentlicht in: | 系统工程理论与实践 2015-12, Vol.35 (12), p.3008-3016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | VaR(value at risk)的测算精度一直是业界和学术关注热点问题.本文应用定义的经济测度距离和引力空间权重矩阵,建立广义多维空间计量模型捕捉金融系统的空间效应信息,构造S-VaR(saptial-value at risk),提高VaR的测算精度.以S&P亚洲50指数作为股票资产组合替代变量进行实证分析,结果表明:广义多维空间效应S-VaR能捕捉金融市场存在的多维空间相关性和风险的空间溢出效应,提高了VaR模型在风险预测中的精确性. |
---|---|
ISSN: | 1000-6788 |