The ultrafilter number and $\mathfrak {hm}

The cardinal invariant $\mathfrak {hm}$ is defined as the minimum size of a family of $\mathsf {c}_{\mathsf {min}}$ -monochromatic sets that cover $2^{\omega }$ (where $\mathsf {c}_{\mathsf {min}}( x,y) $ is the parity of the biggest initial segment both x and y have in common). We prove that $\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2023-04, Vol.75 (2), p.494-530
1. Verfasser: Guzmán, Osvaldo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cardinal invariant $\mathfrak {hm}$ is defined as the minimum size of a family of $\mathsf {c}_{\mathsf {min}}$ -monochromatic sets that cover $2^{\omega }$ (where $\mathsf {c}_{\mathsf {min}}( x,y) $ is the parity of the biggest initial segment both x and y have in common). We prove that $\mathfrak {hm}=\omega _{1}$ holds in Shelah’s model of $\mathfrak {i
ISSN:0008-414X
1496-4279
DOI:10.4153/S0008414X21000614