Isomorphisms in Subspaces of c0

A Banach space X is said to be subspace homogeneous if for every two isomorphic closed subspaces Y and Z of X, both of infinite codimension, there is an automorphism of X (i.e. a bounded linear bijection of X) which carries Y onto Z. In [1] Lindenstrauss and Rosenthal showed that c0 is subspace homo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 1971-12, Vol.14 (4), p.571-572
1. Verfasser: Lohman, Robert H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Banach space X is said to be subspace homogeneous if for every two isomorphic closed subspaces Y and Z of X, both of infinite codimension, there is an automorphism of X (i.e. a bounded linear bijection of X) which carries Y onto Z. In [1] Lindenstrauss and Rosenthal showed that c0 is subspace homogeneous, a property also shared by l 2, and conjectured that c0 and l 2 are the only subspace homogeneous Banach spaces. In that paper no mention was made of subspaces of c0 .
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-1971-103-8