Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups
Given a finite group $\text{G}$ and a field $K$ , the faithful dimension of $\text{G}$ over $K$ is defined to be the smallest integer $n$ such that $\text{G}$ embeds into $\operatorname{GL}_{n}(K)$ . We address the problem of determining the faithful dimension of a $p$ -group of the form $\mathscr{G...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2019-08, Vol.155 (8), p.1618-1654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a finite group
$\text{G}$
and a field
$K$
, the faithful dimension of
$\text{G}$
over
$K$
is defined to be the smallest integer
$n$
such that
$\text{G}$
embeds into
$\operatorname{GL}_{n}(K)$
. We address the problem of determining the faithful dimension of a
$p$
-group of the form
$\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$
associated to
$\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$
in the Lazard correspondence, where
$\mathfrak{g}$
is a nilpotent
$\mathbb{Z}$
-Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of
$\mathscr{G}_{p}$
is a piecewise polynomial function of
$p$
on a partition of primes into Frobenius sets. Furthermore, we prove that for
$p$
sufficiently large, there exists a partition of
$\mathbb{N}$
by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of
$\mathscr{G}_{q}$
for
$q:=p^{f}$
is equal to
$fg(p^{f})$
for a polynomial
$g(T)$
. We show that for many naturally arising
$p$
-groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X19007462 |