Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups

Given a finite group $\text{G}$ and a field $K$ , the faithful dimension of $\text{G}$ over $K$ is defined to be the smallest integer $n$ such that $\text{G}$ embeds into $\operatorname{GL}_{n}(K)$ . We address the problem of determining the faithful dimension of a $p$ -group of the form $\mathscr{G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2019-08, Vol.155 (8), p.1618-1654
Hauptverfasser: Bardestani, Mohammad, Mallahi-Karai, Keivan, Salmasian, Hadi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a finite group $\text{G}$ and a field $K$ , the faithful dimension of $\text{G}$ over $K$ is defined to be the smallest integer $n$ such that $\text{G}$ embeds into $\operatorname{GL}_{n}(K)$ . We address the problem of determining the faithful dimension of a $p$ -group of the form $\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$ associated to $\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$ in the Lazard correspondence, where $\mathfrak{g}$ is a nilpotent $\mathbb{Z}$ -Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of $\mathscr{G}_{p}$ is a piecewise polynomial function of $p$ on a partition of primes into Frobenius sets. Furthermore, we prove that for $p$ sufficiently large, there exists a partition of $\mathbb{N}$ by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of $\mathscr{G}_{q}$ for $q:=p^{f}$ is equal to $fg(p^{f})$ for a polynomial $g(T)$ . We show that for many naturally arising $p$ -groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X19007462