Spins of prime ideals and the negative Pell equation $x^{2}-2py^{2}=-1
Let $p\equiv 1\hspace{0.2em}{\rm mod}\hspace{0.2em}4$ be a prime number. We use a number field variant of Vinogradov’s method to prove density results about the following four arithmetic invariants: (i) $16$ -rank of the class group $\text{Cl}(-4p)$ of the imaginary quadratic number field $\mathbb{...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2019-01, Vol.155 (1), p.100-125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$p\equiv 1\hspace{0.2em}{\rm mod}\hspace{0.2em}4$
be a prime number. We use a number field variant of Vinogradov’s method to prove density results about the following four arithmetic invariants: (i)
$16$
-rank of the class group
$\text{Cl}(-4p)$
of the imaginary quadratic number field
$\mathbb{Q}(\sqrt{-4p})$
; (ii)
$8$
-rank of the ordinary class group
$\text{Cl}(8p)$
of the real quadratic field
$\mathbb{Q}(\sqrt{8p})$
; (iii) the solvability of the negative Pell equation
$x^{2}-2py^{2}=-1$
over the integers; (iv)
$2$
-part of the Tate–Šafarevič group
$\unicode[STIX]{x0428}(E_{p})$
of the congruent number elliptic curve
$E_{p}:y^{2}=x^{3}-p^{2}x$
. Our results are conditional on a standard conjecture about short character sums. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X18007601 |