ENRIQUES’ CLASSIFICATION IN CHARACTERISTIC $p>0$ : THE $P_{12}$ -THEOREM
The main goal of this paper is to show that Castelnuovo–Enriques’ $P_{12}$ - theorem (a precise version of the rough classification of algebraic surfaces) also holds for algebraic surfaces $S$ defined over an algebraically closed field $k$ of positive characteristic ( $\text{char}(k)=p>0$ ). The...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2019-09, Vol.235, p.201-226 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main goal of this paper is to show that Castelnuovo–Enriques’
$P_{12}$
- theorem (a precise version of the rough classification of algebraic surfaces) also holds for algebraic surfaces
$S$
defined over an algebraically closed field
$k$
of positive characteristic (
$\text{char}(k)=p>0$
). The result relies on a main theorem describing the growth of the plurigenera for properly elliptic or properly quasielliptic surfaces (surfaces with Kodaira dimension equal to 1). We also discuss the limit cases, i.e., the families of surfaces which show that the result of the main theorem is sharp. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/nmj.2018.8 |