ON $\kappa $ -HOMOGENEOUS, BUT NOT $\kappa $ -TRANSITIVE PERMUTATION GROUPS
A permutation group G on a set A is ${\kappa }$ -homogeneous iff for all $X,Y\in \bigl [ {A} \bigr ]^ {\kappa } $ with $|A\setminus X|=|A\setminus Y|=|A|$ there is a $g\in G$ with $g[X]=Y$ . G is ${\kappa }$ -transitive iff for any injective function f with $\operatorname {dom}(f)\cup \operatorname...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2023-03, Vol.88 (1), p.363-380 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A permutation group G on a set A is
${\kappa }$
-homogeneous iff for all
$X,Y\in \bigl [ {A} \bigr ]^ {\kappa } $
with
$|A\setminus X|=|A\setminus Y|=|A|$
there is a
$g\in G$
with
$g[X]=Y$
. G is
${\kappa }$
-transitive iff for any injective function f with
$\operatorname {dom}(f)\cup \operatorname {ran}(f)\in \bigl [ {A} \bigr ]^ {\le {\kappa }} $
and
$|A\setminus \operatorname {dom}(f)|=|A\setminus \operatorname {ran}(f)|=|A|$
there is a
$g\in G$
with
$f\subset g$
. Giving a partial answer to a question of P. M. Neumann [6] we show that there is an
${\omega }$
-homogeneous but not
${\omega }$
-transitive permutation group on a cardinal
${\lambda }$
provided
(i)
${\lambda } |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2021.63 |