ON $\kappa $ -HOMOGENEOUS, BUT NOT $\kappa $ -TRANSITIVE PERMUTATION GROUPS

A permutation group G on a set A is ${\kappa }$ -homogeneous iff for all $X,Y\in \bigl [ {A} \bigr ]^ {\kappa } $ with $|A\setminus X|=|A\setminus Y|=|A|$ there is a $g\in G$ with $g[X]=Y$ . G is ${\kappa }$ -transitive iff for any injective function f with $\operatorname {dom}(f)\cup \operatorname...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2023-03, Vol.88 (1), p.363-380
Hauptverfasser: SHELAH, SAHARON, SOUKUP, LAJOS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A permutation group G on a set A is ${\kappa }$ -homogeneous iff for all $X,Y\in \bigl [ {A} \bigr ]^ {\kappa } $ with $|A\setminus X|=|A\setminus Y|=|A|$ there is a $g\in G$ with $g[X]=Y$ . G is ${\kappa }$ -transitive iff for any injective function f with $\operatorname {dom}(f)\cup \operatorname {ran}(f)\in \bigl [ {A} \bigr ]^ {\le {\kappa }} $ and $|A\setminus \operatorname {dom}(f)|=|A\setminus \operatorname {ran}(f)|=|A|$ there is a $g\in G$ with $f\subset g$ . Giving a partial answer to a question of P. M. Neumann [6] we show that there is an ${\omega }$ -homogeneous but not ${\omega }$ -transitive permutation group on a cardinal ${\lambda }$ provided (i) ${\lambda }
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2021.63