Theory for the rheology of dense non-Brownian suspensions: divergence of viscosities and $\unicode[STIX]{x1D707}$ – $J$ rheology

A systematic microscopic theory for the rheology of dense non-Brownian suspensions characterized by the volume fraction $\unicode[STIX]{x1D711}$ is developed. The theory successfully derives the critical behaviour in the vicinity of the jamming point (volume fraction $\unicode[STIX]{x1D711}_{J}$ ),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-04, Vol.864, p.1125-1176
Hauptverfasser: Suzuki, Koshiro, Hayakawa, Hisao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A systematic microscopic theory for the rheology of dense non-Brownian suspensions characterized by the volume fraction $\unicode[STIX]{x1D711}$ is developed. The theory successfully derives the critical behaviour in the vicinity of the jamming point (volume fraction $\unicode[STIX]{x1D711}_{J}$ ), for both the pressure $P$ and the shear stress $\unicode[STIX]{x1D70E}_{xy}$ , i.e.  $P\sim \unicode[STIX]{x1D70E}_{xy}\sim \dot{\unicode[STIX]{x1D6FE}}\unicode[STIX]{x1D702}_{0}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D711}^{-2}$ , where $\dot{\unicode[STIX]{x1D6FE}}$ is the shear rate, $\unicode[STIX]{x1D702}_{0}$ is the shear viscosity of the solvent and $\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D711}=\unicode[STIX]{x1D711}_{J}-\unicode[STIX]{x1D711}>0$ is the distance from the jamming point. It also successfully describes the behaviour of the stress ratio $\unicode[STIX]{x1D707}=\unicode[STIX]{x1D70E}_{xy}/P$ with respect to the viscous number $J=\dot{\unicode[STIX]{x1D6FE}}\unicode[STIX]{x1D702}_{0}/P$ .
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2019.5