Theory for the rheology of dense non-Brownian suspensions: divergence of viscosities and $\unicode[STIX]{x1D707}$ – $J$ rheology
A systematic microscopic theory for the rheology of dense non-Brownian suspensions characterized by the volume fraction $\unicode[STIX]{x1D711}$ is developed. The theory successfully derives the critical behaviour in the vicinity of the jamming point (volume fraction $\unicode[STIX]{x1D711}_{J}$ ),...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-04, Vol.864, p.1125-1176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A systematic microscopic theory for the rheology of dense non-Brownian suspensions characterized by the volume fraction
$\unicode[STIX]{x1D711}$
is developed. The theory successfully derives the critical behaviour in the vicinity of the jamming point (volume fraction
$\unicode[STIX]{x1D711}_{J}$
), for both the pressure
$P$
and the shear stress
$\unicode[STIX]{x1D70E}_{xy}$
, i.e.
$P\sim \unicode[STIX]{x1D70E}_{xy}\sim \dot{\unicode[STIX]{x1D6FE}}\unicode[STIX]{x1D702}_{0}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D711}^{-2}$
, where
$\dot{\unicode[STIX]{x1D6FE}}$
is the shear rate,
$\unicode[STIX]{x1D702}_{0}$
is the shear viscosity of the solvent and
$\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D711}=\unicode[STIX]{x1D711}_{J}-\unicode[STIX]{x1D711}>0$
is the distance from the jamming point. It also successfully describes the behaviour of the stress ratio
$\unicode[STIX]{x1D707}=\unicode[STIX]{x1D70E}_{xy}/P$
with respect to the viscous number
$J=\dot{\unicode[STIX]{x1D6FE}}\unicode[STIX]{x1D702}_{0}/P$
. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2019.5 |