A dynamical approach to the asymptotic behavior of the sequence $\Omega (n)
We study the asymptotic behavior of the sequence $ \{\Omega (n) \}_{ n \in \mathbb {N} } $ from a dynamical point of view, where $ \Omega (n) $ denotes the number of prime factors of $ n $ counted with multiplicity. First, we show that for any non-atomic ergodic system $(X, \mathcal {B}, \mu , T)$ ,...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2023-11, Vol.43 (11), p.3685-3706 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic behavior of the sequence
$ \{\Omega (n) \}_{ n \in \mathbb {N} } $
from a dynamical point of view, where
$ \Omega (n) $
denotes the number of prime factors of
$ n $
counted with multiplicity. First, we show that for any non-atomic ergodic system
$(X, \mathcal {B}, \mu , T)$
, the operators
$T^{\Omega (n)}: \mathcal {B} \to L^1(\mu )$
have the strong sweeping-out property. In particular, this implies that the pointwise ergodic theorem does not hold along
$\Omega (n)$
. Second, we show that the behaviors of
$\Omega (n)$
captured by the prime number theorem and Erdős–Kac theorem are disjoint, in the sense that their dynamical correlations tend to zero. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2022.81 |