A dynamical approach to the asymptotic behavior of the sequence $\Omega (n)

We study the asymptotic behavior of the sequence $ \{\Omega (n) \}_{ n \in \mathbb {N} } $ from a dynamical point of view, where $ \Omega (n) $ denotes the number of prime factors of $ n $ counted with multiplicity. First, we show that for any non-atomic ergodic system $(X, \mathcal {B}, \mu , T)$ ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2023-11, Vol.43 (11), p.3685-3706
1. Verfasser: LOYD, KAITLYN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of the sequence $ \{\Omega (n) \}_{ n \in \mathbb {N} } $ from a dynamical point of view, where $ \Omega (n) $ denotes the number of prime factors of $ n $ counted with multiplicity. First, we show that for any non-atomic ergodic system $(X, \mathcal {B}, \mu , T)$ , the operators $T^{\Omega (n)}: \mathcal {B} \to L^1(\mu )$ have the strong sweeping-out property. In particular, this implies that the pointwise ergodic theorem does not hold along $\Omega (n)$ . Second, we show that the behaviors of $\Omega (n)$ captured by the prime number theorem and Erdős–Kac theorem are disjoint, in the sense that their dynamical correlations tend to zero.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2022.81