p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links
Let $p$ be a prime number. We develop a theory of $p$ -adic Mahler measure of polynomials and apply it to the study of $\mathbb{Z}$ -covers of rational homology 3-spheres branched over links. We obtain a $p$ -adic analogue of the asymptotic formula of the torsion homology growth and a balance formul...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2020-01, Vol.40 (1), p.272-288 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 1 |
container_start_page | 272 |
container_title | Ergodic theory and dynamical systems |
container_volume | 40 |
creator | UEKI, JUN |
description | Let
$p$
be a prime number. We develop a theory of
$p$
-adic Mahler measure of polynomials and apply it to the study of
$\mathbb{Z}$
-covers of rational homology 3-spheres branched over links. We obtain a
$p$
-adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the
$p$
-adic entropy and the Iwasawa
$\unicode[STIX]{x1D707}_{p}$
-invariant. We also apply the purely
$p$
-adic theory of Besser–Deninger to
$\mathbb{Z}$
-covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper. |
doi_str_mv | 10.1017/etds.2018.35 |
format | Article |
fullrecord | <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_journals_10_1017_etds_2018_35</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2018_35</cupid><sourcerecordid>10_1017_etds_2018_35</sourcerecordid><originalsourceid>FETCH-cambridge_journals_10_1017_etds_2018_353</originalsourceid><addsrcrecordid>eNqVzrsOgjAYBeDGaCJeNh-gA2vx_y0IzEbj4uZkTJpCi4BcTAsuxndXEl_A6QznnOQjZIXgIWC41p2y3gYw8ngwIg7625j5PoZj4gD6nPEoCKdkZm0JABzDwCHxw6VMqiKlJ5lX2tBaS9sbTWWjqHutZZcnyevy_q7S9qmNpW1Gq6K52wWZZLKyevnLOfEO-_PuyFJZJ6ZQNy3KtjfNtxMIYgCKASgGoOAB__vwAeuNQmI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links</title><source>Cambridge University Press Journals Complete</source><creator>UEKI, JUN</creator><creatorcontrib>UEKI, JUN</creatorcontrib><description>Let
$p$
be a prime number. We develop a theory of
$p$
-adic Mahler measure of polynomials and apply it to the study of
$\mathbb{Z}$
-covers of rational homology 3-spheres branched over links. We obtain a
$p$
-adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the
$p$
-adic entropy and the Iwasawa
$\unicode[STIX]{x1D707}_{p}$
-invariant. We also apply the purely
$p$
-adic theory of Besser–Deninger to
$\mathbb{Z}$
-covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2018.35</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2020-01, Vol.40 (1), p.272-288</ispartof><rights>Cambridge University Press, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385718000354/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>UEKI, JUN</creatorcontrib><title>p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Let
$p$
be a prime number. We develop a theory of
$p$
-adic Mahler measure of polynomials and apply it to the study of
$\mathbb{Z}$
-covers of rational homology 3-spheres branched over links. We obtain a
$p$
-adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the
$p$
-adic entropy and the Iwasawa
$\unicode[STIX]{x1D707}_{p}$
-invariant. We also apply the purely
$p$
-adic theory of Besser–Deninger to
$\mathbb{Z}$
-covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper.</description><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVzrsOgjAYBeDGaCJeNh-gA2vx_y0IzEbj4uZkTJpCi4BcTAsuxndXEl_A6QznnOQjZIXgIWC41p2y3gYw8ngwIg7625j5PoZj4gD6nPEoCKdkZm0JABzDwCHxw6VMqiKlJ5lX2tBaS9sbTWWjqHutZZcnyevy_q7S9qmNpW1Gq6K52wWZZLKyevnLOfEO-_PuyFJZJ6ZQNy3KtjfNtxMIYgCKASgGoOAB__vwAeuNQmI</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>UEKI, JUN</creator><general>Cambridge University Press</general><scope/></search><sort><creationdate>202001</creationdate><title>p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links</title><author>UEKI, JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cambridge_journals_10_1017_etds_2018_353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UEKI, JUN</creatorcontrib><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UEKI, JUN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2020-01</date><risdate>2020</risdate><volume>40</volume><issue>1</issue><spage>272</spage><epage>288</epage><pages>272-288</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Let
$p$
be a prime number. We develop a theory of
$p$
-adic Mahler measure of polynomials and apply it to the study of
$\mathbb{Z}$
-covers of rational homology 3-spheres branched over links. We obtain a
$p$
-adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the
$p$
-adic entropy and the Iwasawa
$\unicode[STIX]{x1D707}_{p}$
-invariant. We also apply the purely
$p$
-adic theory of Besser–Deninger to
$\mathbb{Z}$
-covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2018.35</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2020-01, Vol.40 (1), p.272-288 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_cambridge_journals_10_1017_etds_2018_35 |
source | Cambridge University Press Journals Complete |
subjects | Original Article |
title | p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p$%20-adic%20Mahler%20measure%20and%20$%5Cmathbb%7BZ%7D$%20-covers%20of%20links&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=UEKI,%20JUN&rft.date=2020-01&rft.volume=40&rft.issue=1&rft.spage=272&rft.epage=288&rft.pages=272-288&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2018.35&rft_dat=%3Ccambridge%3E10_1017_etds_2018_35%3C/cambridge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_etds_2018_35&rfr_iscdi=true |