p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links
Let $p$ be a prime number. We develop a theory of $p$ -adic Mahler measure of polynomials and apply it to the study of $\mathbb{Z}$ -covers of rational homology 3-spheres branched over links. We obtain a $p$ -adic analogue of the asymptotic formula of the torsion homology growth and a balance formul...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2020-01, Vol.40 (1), p.272-288 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$p$
be a prime number. We develop a theory of
$p$
-adic Mahler measure of polynomials and apply it to the study of
$\mathbb{Z}$
-covers of rational homology 3-spheres branched over links. We obtain a
$p$
-adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the
$p$
-adic entropy and the Iwasawa
$\unicode[STIX]{x1D707}_{p}$
-invariant. We also apply the purely
$p$
-adic theory of Besser–Deninger to
$\mathbb{Z}$
-covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2018.35 |