p$ -adic Mahler measure and $\mathbb{Z}$ -covers of links

Let $p$ be a prime number. We develop a theory of $p$ -adic Mahler measure of polynomials and apply it to the study of $\mathbb{Z}$ -covers of rational homology 3-spheres branched over links. We obtain a $p$ -adic analogue of the asymptotic formula of the torsion homology growth and a balance formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-01, Vol.40 (1), p.272-288
1. Verfasser: UEKI, JUN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $p$ be a prime number. We develop a theory of $p$ -adic Mahler measure of polynomials and apply it to the study of $\mathbb{Z}$ -covers of rational homology 3-spheres branched over links. We obtain a $p$ -adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the $p$ -adic entropy and the Iwasawa $\unicode[STIX]{x1D707}_{p}$ -invariant. We also apply the purely $p$ -adic theory of Besser–Deninger to $\mathbb{Z}$ -covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2018.35