Purely infinite labeled graph $C^{\ast }$ -algebras
In this paper, we consider pure infiniteness of generalized Cuntz–Krieger algebras associated to labeled spaces $(E,{\mathcal{L}},{\mathcal{E}})$ . It is shown that a $C^{\ast }$ -algebra $C^{\ast }(E,{\mathcal{L}},{\mathcal{E}})$ is purely infinite in the sense that every non-zero hereditary subalg...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2019-08, Vol.39 (8), p.2128-2158 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider pure infiniteness of generalized Cuntz–Krieger algebras associated to labeled spaces
$(E,{\mathcal{L}},{\mathcal{E}})$
. It is shown that a
$C^{\ast }$
-algebra
$C^{\ast }(E,{\mathcal{L}},{\mathcal{E}})$
is purely infinite in the sense that every non-zero hereditary subalgebra contains an infinite projection (we call this property (IH)) if
$(E,{\mathcal{L}},{\mathcal{E}})$
is disagreeable and every vertex connects to a loop. We also prove that under the condition analogous to (K) for usual graphs,
$C^{\ast }(E,{\mathcal{L}},{\mathcal{E}})=C^{\ast }(p_{A},s_{a})$
is purely infinite in the sense of Kirchberg and Rørdam if and only if every generating projection
$p_{A}$
,
$A\in {\mathcal{E}}$
, is properly infinite, and also if and only if every quotient of
$C^{\ast }(E,{\mathcal{L}},{\mathcal{E}})$
has property (IH). |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2017.123 |