Orbital shadowing, internal chain transitivity and $\unicode[STIX]{x1D714}$ -limit sets

Let $f:X\rightarrow X$ be a continuous map on a compact metric space, let $\unicode[STIX]{x1D714}_{f}$ be the collection of $\unicode[STIX]{x1D714}$ -limit sets of $f$ and let $\mathit{ICT}(f)$ be the collection of closed internally chain transitive subsets. Provided that $f$ has shadowing, it is kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2018-02, Vol.38 (1), p.143-154
Hauptverfasser: GOOD, CHRIS, MEDDAUGH, JONATHAN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $f:X\rightarrow X$ be a continuous map on a compact metric space, let $\unicode[STIX]{x1D714}_{f}$ be the collection of $\unicode[STIX]{x1D714}$ -limit sets of $f$ and let $\mathit{ICT}(f)$ be the collection of closed internally chain transitive subsets. Provided that $f$ has shadowing, it is known that the closure of $\unicode[STIX]{x1D714}_{f}$ in the Hausdorff metric coincides with $\mathit{ICT}(f)$ . In this paper, we prove that $\unicode[STIX]{x1D714}_{f}=\mathit{ICT}(f)$ if and only if $f$ satisfies Pilyugin’s notion of orbital limit shadowing. We also characterize those maps for which $\overline{\unicode[STIX]{x1D714}_{f}}=\mathit{ICT}(f)$ in terms of a variation of orbital shadowing.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2016.30