Orbital shadowing, internal chain transitivity and $\unicode[STIX]{x1D714}$ -limit sets
Let $f:X\rightarrow X$ be a continuous map on a compact metric space, let $\unicode[STIX]{x1D714}_{f}$ be the collection of $\unicode[STIX]{x1D714}$ -limit sets of $f$ and let $\mathit{ICT}(f)$ be the collection of closed internally chain transitive subsets. Provided that $f$ has shadowing, it is kn...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2018-02, Vol.38 (1), p.143-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$f:X\rightarrow X$
be a continuous map on a compact metric space, let
$\unicode[STIX]{x1D714}_{f}$
be the collection of
$\unicode[STIX]{x1D714}$
-limit sets of
$f$
and let
$\mathit{ICT}(f)$
be the collection of closed internally chain transitive subsets. Provided that
$f$
has shadowing, it is known that the closure of
$\unicode[STIX]{x1D714}_{f}$
in the Hausdorff metric coincides with
$\mathit{ICT}(f)$
. In this paper, we prove that
$\unicode[STIX]{x1D714}_{f}=\mathit{ICT}(f)$
if and only if
$f$
satisfies Pilyugin’s notion of orbital limit shadowing. We also characterize those maps for which
$\overline{\unicode[STIX]{x1D714}_{f}}=\mathit{ICT}(f)$
in terms of a variation of orbital shadowing. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2016.30 |