On twisted group $C^{\ast }$ -algebras associated with FC-hypercentral groups and other related groups
We show that the twisted group $C^{\ast }$ -algebra associated with a discrete FC-hypercentral group is simple (respectively, has a unique tracial state) if and only if Kleppner’s condition is satisfied. This generalizes a result of Packer for countable nilpotent groups. We also consider a larger cl...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2016-09, Vol.36 (6), p.1743-1756 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the twisted group
$C^{\ast }$
-algebra associated with a discrete FC-hypercentral group is simple (respectively, has a unique tracial state) if and only if Kleppner’s condition is satisfied. This generalizes a result of Packer for countable nilpotent groups. We also consider a larger class of groups, for which we can show that the corresponding reduced twisted group
$C^{\ast }$
-algebras have a unique tracial state if and only if Kleppner’s condition holds. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2015.9 |