mathbb{A}_{\text{inf}}$ IS INFINITE DIMENSIONAL
Given a perfect valuation ring $R$ of characteristic $p$ that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring $\mathbb{A}_{\inf }$ of Witt vectors of $R$ has infinite Krull dimension.
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2021-11, Vol.20 (6), p.1983-1989 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a perfect valuation ring
$R$
of characteristic
$p$
that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring
$\mathbb{A}_{\inf }$
of Witt vectors of
$R$
has infinite Krull dimension. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748020000201 |