Galois Theory with Infinitely Many Idempotents 1

In 1942 Artin proved the linear independence, over a field S, of distinct automorphism of S; in other words if G is a finite group of automorphisms of S and R is the fixed field, then Horn^S, S) is a free S-module with G as basis. Since then, this last condition (“S is G-Galois”) or its equivalents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 1969-07, Vol.35, p.83-98
Hauptverfasser: Villamayor, O.E., Zelinsky, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1942 Artin proved the linear independence, over a field S, of distinct automorphism of S; in other words if G is a finite group of automorphisms of S and R is the fixed field, then Horn^S, S) is a free S-module with G as basis. Since then, this last condition (“S is G-Galois”) or its equivalents have been used as a postulate in all the Galois theories of rings that are not fields, for example by Dieudonné, Jacobson, Azumaya and Nakayama for noncommutative rings and then in [AG, Appendix] and [CUR] for commutative rings. When S has no idempotents but 0 and 1, [CHR] proves that the ordinary fundamental theorem of Galois theory holds with no real change from the classical, field case.
ISSN:0027-7630
2152-6842
DOI:10.1017/S0027763000013039