A Helfrich functional for compact surfaces in $\mathbb{C}P^{2}
Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$ . In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2024-01, Vol.66 (1), p.36-50 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$f\;:\; M\rightarrow \mathbb{C}P^{2}$
be an isometric immersion of a compact surface in the complex projective plane
$\mathbb{C}P^{2}$
. In this paper, we consider the Helfrich-type functional
$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$
, where
$\lambda _{1}, \lambda _{2}\in \mathbb{R}$
with
$\lambda _{1}\geqslant 0$
,
$H$
and
$C$
are respectively the mean curvature vector and the Kähler function of
$M$
in
$\mathbb{C}P^{2}$
. The critical surfaces of
$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$
are called Helfrich surfaces. We compute the first variation of
$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$
and classify the homogeneous Helfrich tori in
$\mathbb{C}P^{2}$
. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089523000320 |