A Helfrich functional for compact surfaces in $\mathbb{C}P^{2}

Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$ . In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2024-01, Vol.66 (1), p.36-50
1. Verfasser: Yao, Zhongwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$ . In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$ , where $\lambda _{1}, \lambda _{2}\in \mathbb{R}$ with $\lambda _{1}\geqslant 0$ , $H$ and $C$ are respectively the mean curvature vector and the Kähler function of $M$ in $\mathbb{C}P^{2}$ . The critical surfaces of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. We compute the first variation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ and classify the homogeneous Helfrich tori in $\mathbb{C}P^{2}$ . Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089523000320