ON $p$ -PARTS OF CONJUGACY CLASS SIZES OF FINITE GROUPS
Let $G$ be a finite group. Let $\operatorname{cl}(G)$ be the set of conjugacy classes of $G$ and let $\operatorname{ecl}_{p}(G)$ be the largest integer such that $p^{\operatorname{ecl}_{p}(G)}$ divides $|C|$ for some $C\in \operatorname{cl}(G)$ . We prove the following results. If $\operatorname{ecl...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2018-06, Vol.97 (3), p.406-411 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$G$
be a finite group. Let
$\operatorname{cl}(G)$
be the set of conjugacy classes of
$G$
and let
$\operatorname{ecl}_{p}(G)$
be the largest integer such that
$p^{\operatorname{ecl}_{p}(G)}$
divides
$|C|$
for some
$C\in \operatorname{cl}(G)$
. We prove the following results. If
$\operatorname{ecl}_{p}(G)=1$
, then
$|G:F(G)|_{p}\leq p^{4}$
if
$p\geq 3$
. Moreover, if
$G$
is solvable, then
$|G:F(G)|_{p}\leq p^{2}$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972718000072 |