DOMINATION BY POSITIVE WEAK$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}^{}$ DUNFORD–PETTIS OPERATORS ON BANACH LATTICES
Recently, H’michane et al. [‘On the class of limited operators’, Acta Math. Sci. (submitted)] introduced the class of weak$^*$ Dunford–Pettis operators on Banach spaces, that is, operators which send weakly compact sets onto limited sets. In this paper, the domination problem for weak$^*$ Dunford–Pe...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2014-10, Vol.90 (2), p.311-318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, H’michane et al. [‘On the class of limited operators’, Acta Math. Sci. (submitted)] introduced the class of weak$^*$ Dunford–Pettis operators on Banach spaces, that is, operators which send weakly compact sets onto limited sets. In this paper, the domination problem for weak$^*$ Dunford–Pettis operators is considered. Let $S, T:E\to F$ be two positive operators between Banach lattices $E$ and $F$ such that $0\leq S\leq T$. We show that if $T$ is a weak$^{*}$ Dunford–Pettis operator and $F$ is $\sigma $-Dedekind complete, then $S$ itself is weak$^*$ Dunford–Pettis. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S000497271400032X |