Protective effect of grifolin against brain injury in an acute cerebral ischemia rat model

Purpose: To evaluate the protective effects of grifolin against brain injury in an acute cerebral ischemia rat model. Methods: Rats were assigned to five groups: control, negative control, and grifolin (50, 100, and 200 mg/kg, p.o.) treated groups, which received the drug for 2 weeks. All the animal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tropical journal of pharmaceutical research 2020-07, Vol.16 (6)
Hauptverfasser: Jing, Shan, Ying, Piaopiao, Hu, Xiaohua, Yu, Ze, Sun, Jianwei, Ding, Yuchao, Du, Hongyan, Song, Shuijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: To evaluate the protective effects of grifolin against brain injury in an acute cerebral ischemia rat model. Methods: Rats were assigned to five groups: control, negative control, and grifolin (50, 100, and 200 mg/kg, p.o.) treated groups, which received the drug for 2 weeks. All the animals were sacrificed at the end of the protocol, and tissue homogenates were prepared from isolated brain tissue. Glutathione peroxidase (GPX), superoxide dismutase (SOD), malondialdehyde (MDA), and nitric oxide (NO), as oxidative stress indicators, were determined for the tissue homogenates of the ischemic rats. Inflammatory mediators (cytokines and nuclear factor kappa B p65, NF κB), DNA damage, and ATP and caspase 3 levels in the tissue homogenates were also assessed. Results: Treatment with grifolin increased SOD and GPX significantly and decreased MDA and NO levels in tissue homogenates of the cerebral ischemic rats compared with those in the negative control group (p < 0.05). Treatment with grifolin also attenuated the altered levels of inflammatory mediators (cytokines and NF-κB), caspase 3, and ATP levels in the tissue homogenate of cerebral ischemic rats (p < 0.05). The results of comet assay on the tissue homogenate suggest that treatment with grifolin reduced or prevented damage. Conclusions: The results show that treatment with grifolin protects against neuronal damage in acute cerebral ischemic rats via its anti-inflammatory and anti-oxidant properties.
ISSN:1596-5996