Switchable surfaces for regulating biomolecular and cellular interactions under complex biological conditions

Stimuli-responsive surfaces that can regulate specific biomolecular interactions are enabling novel functionalities and new device designs for a variety of biological and medical applications. In this study two different mixed self-assembled monolayers (SAMs) were used to regulate biomolecular and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lashkor, Minhaj
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stimuli-responsive surfaces that can regulate specific biomolecular interactions are enabling novel functionalities and new device designs for a variety of biological and medical applications. In this study two different mixed self-assembled monolayers (SAMs) were used to regulate biomolecular and cellular interactions under complex biological conditions. The first part of this study was based on a well-defined biotinylated mixed SAM with an ethylene glycol group that prevented non-specific binding and used an electrical stimulus to allow control over biomolecular interactions under complex biological matrixes. This SAM system, based on switchable oligopeptides, can be dynamically modulated by an electrical potential under different commonly used biological media, ranging from Dulbecco's Modified Eagle Medium (DMEM) to DMEM supplemented with fetal bovine serum (FBS) and zwitterionic buffering agents such as HEPES. The second study involved electrically switchable mixed SAMs that were shown to be capable of exposing and concealing the RGD cell adhesion motif, to dynamically regulate the adhesion of immune macrophage cells under complex biological conditions. Macrophage cell adhesion to biomaterial surfaces plays a key role in mediating immune response to foreign materials. This system is one of the first examples of a material surface system that can control macrophage cell adhesion on demand. Hence, this study will be useful in developing more realistic dynamic extracellular matrix models and is certainly applicable in a wide variety of biological and medical applications.